Mit einer Datenstrategie gegen Ihren Informationsdurst

Sie können mit Technologien wie Big Data oder Data Lakes viele Daten anhäufen. Aber mehr Daten bedeutet nicht zwingend mehr Informationen. Vor dem Sammeln sollten Sie sich im Klaren sein, welche Daten Ihnen wie weiterhelfen und was Sie dafür brauchen. Das Datenstrategie Canvas unterstützt Sie dabei.

Home / Datenstrategie / Mit einer Datenstrategie gegen Ihren Informationsdurst

Wie die beiden vorhergehenden Artikel zum Kundenkontaktpunkte Canvas bzw. zum Analytik-Reifegrad Canvas stellt Ihnen auch dieser vierte Beitrag der insgesamt sechsteiligen Serie ein Canvas aus der Datentreiber-Methodik zum Datenstrategie-Design vor.

Sollten Sie erst jetzt in die Beitragsserie einsteigen, sei hier auch noch einmal auf den ersten Artikel verwiesen. Dieser führt Sie allgemein an das Thema Datenstrategie sowie das von Datentreiber Martin Szugat entwickelte Datenstrategie-Designkit heran.

Zurück zum Datenstrategie Canvas. Auch dieses finden Sie wie das gesamte Designkit als Open Source auf Creatlr. Während dieser Artikel keine detaillierte Anleitung für die Arbeit mit dem Canvas ist, so finden Sie aber eben dort auf Creatlr ebenfalls ein Tutorial, welches Ihnen die Vorgangsweise im Detail vermittelt.

Darüber hinaus wird das Datenstrategie Canvas im Aufsteiger-Seminar Data Thinking bearbeitet. Auch dieses Datentreiber-Seminar hat interaktiven Workshop-Charakter, was sehr wichtig ist, da Datenstrategie-Design selten ein linearer Prozess ist. Somit muss jedes einzelne Canvas im Gesamtkontext des Datenstrategie-Designkits verstanden werden.

Wissen Sie überhaupt, wobei Ihnen Daten helfen sollen?

Das Datenstrategie Canvas ist in zwei Abschnitte mit jeweils drei Bereichen unterteilt. Der obere Abschnitt mit den Bereichen Erschließung, Verfeinerung und Verwertung hilft Ihnen das „Was“, „Wie“ und „Warum“ Ihrer Datenstrategie zu beantworten. Der untere Abschnitt (Werkzeuge, Personen, Partnerschaften) unterstützt Sie, die für die Umsetzung der Datenstrategie notwendigen Ressourcen zu identifizieren.

Bei der Bearbeitung des Canvas können Sie entweder von oben rechts nach oben links vorgehen, also welche Ziele (Warum?) verfolgen Sie mit der Verfeinerung (Wie?) welcher Daten (Was?). Alternativ können Sie für vorhandene Daten auf die Suche nach Anwendungsfällen gehen.

Daten bringen Ihnen dann Mehrwert, wenn die Verwertung dieser im Zusammenhang mit Ihren Unternehmenszielen stehen. Diese Verwertung kann Sie in unterschiedlichen Bereichen (Marketing, Vertrieb, …) bei diversen Zielen unterstützen (neue Produkte entwickeln, Prozesse verbessern, …). Das Erreichen dieser Ziele wirkt sich wiederum positiv auf Ihr Unternehmen aus.

Fragen Sie sich also beispielsweise welche Informationen Ihnen dabei helfen würden, Ihre Kosten zu reduzieren. Aus unserem ersten Artikel in dieser Beitragsreihe kennen Sie bereits die unterschiedlichen analytischen Methoden. Ist ein erster Schritt vielleicht mit Hilfe von deskriptiver Analytik die Erreichung bestimmter KPI zu verfolgen? Oder wollen Sie mit prädikativer Analytik („Predictive Analytics“) Umsätze prognostizieren, um davon die Auslastung abzuleiten und dementsprechend mit einer besseren Personaleinsatzplanung wiederum Kosten zu sparen?

Die identifizierten Anwendungsfälle können Sie zu einem späteren Zeitpunkt bzgl. der notwendigen analytischen Reife priorisieren. Wenn Sie Probleme beim Finden von Anwendungsfällen haben, hilft Ihnen das Geschäftsmodell oder das Wertangebot Canvas dabei, noch einmal einen Schritt zurück zu gehen und diese Kernthemen (be-)greifbarer zu machen.

Wie kommen Sie von den Daten zur Information?

Zu den für Ihre Anwendungsfälle benötigten Informationen kommen Sie mittels Verfeinerung des Rohstoffs Daten. 

„Wenn Sie das Ziel kennen, müssen Sie den Weg definieren: wie können Sie die #Daten zu wertvollen Informationen verfeinern?“

Dazu bestimmen Sie, welche Schritte notwendig sind, um die Daten in die richtige Form von der Erschließung bis zur Verwertung zu bringen. Denken Sie also von der Quelle bis zur etwaigen Anwendung durch den eigentlichen Nutzer der Daten. Wo müssen beispielsweise Daten zusammengeführt werden? Welche Modelle müssen berechnet werden und wie wird das Ergebnis schlussendlich in den Arbeitsablauf des Empfängers integriert?

Die Fragen, welche Sie sich hier stellen sollten, müssen dabei aus allen notwendigen Perspektiven kommen. Denn es geht nicht nur darum Daten durch unterschiedliche Methoden (Aggregation, Transformation, Anreicherung, …) aufzuwerten. Es geht auch darum die Daten entsprechend etwaiger Anforderungen zu verarbeiten. Beispielhaft sei hier die Anonymisierung der Daten aus datenschutzrechtlichen Gründen genannt.

Woher kommen Ihre Daten?

Schlussendlich müssen Sie die Quellen Ihrer Daten bestimmen. Dabei kann es sich um bereits bestehende Datenquellen handeln oder Datenquellen, welche erst von Ihnen erschlossen werden müssen. Je nach Anwendungsfall und Komplexität der Erschließung kann sich Zweiteres lohnen oder eben nicht.

Wie bereits eingangs erwähnt, ist es auch möglich aus Sichtweise der Datenquellen zu starten. Für den Fall, dass Sie bereits viele Daten in Ihrem Unternehmen sind, versuchen Sie diese mit entsprechenden Anwendungsfällen zu verknüpfen. Erst dann liefern Ihre Datenschätze Mehrwert oder entpuppen sich als Datenmüll.

Daten sind nie kostenlos. Tritt der Fall auf, dass Sie viel mehr Daten als Anwendungsfälle haben, sollten Sie sich darüber Gedanken machen, ob die Kosten der Datenhaltung dieser ungenutzten Daten (Speicher, Betreuung aus technischer und Datenschutz-Sicht,…) sinnvoll eingesetzte Ressourcen sind.

Denken Sie auch bereits (strategisch) an die Umsetzung.

Mit Hilfe des unteren Abschnitts des Datenstrategie Canvas können Sie transparent machen, welche Ressourcen Sie zur Umsetzung Ihrer Datenstrategie benötigen: Welche Werkzeuge, Personen und Partnerschaften brauchen Sie zur Realisierung?

Wichtig ist dabei, dass Sie einerseits bereits in einem frühen Stadium kritische Ressourcen identifizieren. Hier kann es sich zum Beispiel um Mitarbeiter mit speziellen Fähigkeiten handeln oder Software, die benötigt wird, aber noch gar nicht in Ihrem Unternehmen in Verwendung ist bzw. erst beschafft werden muss.

„Erfinden Sie das Rad nicht neu und denken Sie strategisch. Wo können Sie Allianzen schmieden? Von welchem externen Know-How können Sie profitieren? Sie müssen nicht jeden Algorithmus selbst erfinden oder jede Technologie selbst entwickeln, um mit #DataScience erfolgreich zu sein.“

Andererseits sollten Sie sich Gedanken darüber machen, also strategische Überlegungen anstellen, wo Sie eventuell externe Hilfe benötigen bzw. mit dieser externen Unterstützung schneller zum Ziel kommen. Hierbei kann es sich sowohl um Wissen, aber auch natürlich um Daten handeln, die zugekauft werden müssen.

Fazit und Ausblick

Dieser vierte Artikel unserer Beitragsserie zum Datenstrategie-Design hat Ihnen gezeigt, wie Sie mit dem Datenstrategie Canvas Anwendungsfälle definieren und strukturiert deren Umsetzung durchdenken. Darüber hinaus können Sie für bereits vorhandene, aber nicht genutzte Datenquellen geeignete Verwertungsszenarien erarbeiten.

Erfahren Sie im nächsten Artikel, wie Sie mit dem Datenlandschaft Canvas Ihre Datenquellen bzw. Unternehmensdaten bewerten können. Dieses Canvas ergänzt das hier vorgestellte Datenstrategie Canvas, indem es den Punkt der Datenerschließung weiter vertieft und zusätzliche wichtige Fragestellungen in diesem Zusammenhang, beispielsweise des Ursprungs der Daten, aufgreift.

————————————————————————————————————————————

Interesse am Datenstrategie-Design geweckt? Werfen Sie einen Blick auf unsere Datengipfel-Seminare Data Strategy für Einsteiger und Data Thinking für Aufsteiger. Oder kontaktieren Sie uns, falls Sie bezüglich unserer Datenstrategie-Fortbildung noch weitere Fragen haben.

Anmerkung: Verfasser dieses Beitrags ist unser Gastautor Martin Raffeiner, Geschäftsführer von datenbotschafter consulting.

'
Abonnieren Sie unseren Newsletter:

Erhalten Sie alle relevanten Blogartikel, neue Seminartermine, spezielle Konferenzangebote und vieles mehr bequem per E-Mail.

Mit dem Klicken auf ‚Für den Newsletter anmelden’ stimmen Sie zu, dass wir Ihre Informationen im Rahmen unserer Datenschutzbestimmungen verarbeiten.

Wir treiben Ihr Unternehmen voran.
Zum Newsletter anmelden.
Erhalten Sie monatlich aktuelle und relevante Informationen zu den Themen Datenstrategie & Data Thinking sowie Neuigkeiten und Rabatte für unsere Konferenzen & Seminare.
Jetzt anmelden

Mit dem Klicken auf ‚Jetzt anmelden’ stimmen Sie zu, dass wir Ihre Informationen im Rahmen unserer Datenschutzbestimmungen verarbeiten.
close-link